Jauch, D. A., Sethy, V. H., Weick, B. G., Chase, T. N. \& Schwarcz, R. (1993). Neuropharmacology, 32, 467-472.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Kapoor, V., Kapoor, R. \& Chalmers, J. (1994). Clin. Exp. Pharmacol. Physiol. 21, 891-896.
Kvick, A., Koetzle, T. F., Thomas, R. \& Takusagawa, F. (1974). J. Chem. Phys. 60. 3866-3874.
Martin, D. W., Mayes, P. A. \& Rodwell, V. W. (1983). Harper's Review of Biochemistry, pp. 464-479. Tokyo: Maruzen Asia.
Molecular Structure Corporation (1985). TEXSAN. TEXRAY Structure Analysis Package. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1988). MSCIAFC Diffractometer Control Sofiware. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Sheldrick, G. M. (1985). SHELXS86. Crystallographic Computing 3, edited by G. M. Sheldrick, C. Krüger \& R. Goddard, pp. 175-189. Oxford University Press.
Stone, T. W. (1993). Pharmacol. Rev. 45, 309-379.
Takusagawa, F., Hirotsu, K. \& Shimada, A. (1973). Bull. Chem. Soc. Jpn, 46, 2372-2380.
Takusagawa, F. \& Koetzle, T. F. (1978). Acta Cryst. B34, 1149-1154.
Takusagawa, F. \& Shimada, A. (1973). Chem. Lett. pp. 1089-1090.

Acta Cryst. (1996). C52, 1829-1831

A cis-Fused Decalone and a Bicyclo[4.3.1]decanone Ring System

Khall A. Abboud, Yongping Xie and Eric J. Enholm
Department of Chemistry, University of Florida, PO Box
117200, Gainesville, Florida 32611-7200, USA. E-mail:
kaabboud@pine.circa.ufl.edu
(Received 22 March 1995; accepted 2 January 1996)

Abstract

The crystal structures of ($4 \mathrm{a} \alpha, 8 \alpha, 8 \mathrm{a} \alpha)$-(\pm)-1-oxoper-hydro-8-naphthyl p-bromobenzoate, $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{BrO}_{3}$, (2), and (\pm)-endo-5-hydroxy-1-methylbicyclo[4.3.1.]decan-7-one, $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{2}$, (3), were determined in order to ascertain their relative configurations. Compound (2) has two cis-fused six-membered rings which both adopt chair conformations. Compound (3) has a bridged bicyclic ring system consisting of a six- and a sevenmembered ring which both adopt chair conformations. Molecules of (3) are linked about inversion centers into dimers by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds $[\mathrm{O} \cdots \mathrm{O}$ 2.844 (3) \AA § involving the hydroxy and carbonyl groups.

Comment

Many of the sophisticated organic molecules found in nature, such as carbohydrates, steroids and some terpenes, possess the common feature of cyclic components
(Thebtaranonth \& Thebtaranonth, 1994). Cyclization reactions, especially those promoted by free radicals, are therefore particularly valuable in the synthesis and modification of these complex molecules (Giese, 1986). The application of free radicals to synthesis, in general, permits neutral reaction conditions and alleviates the need for protecting groups (Curran, 1988).
As part of a plan to develop and exploit freeradical reactions, unsaturated ketones were subjected to treatment with tri- n-butyltin hydride, which led to the formation of O-stannyl ketyls. The title molecules, (2) and (3), were prepared by a new O-stannyl ketyl reaction which promoted an aldol-like cyclization (Enholm, Xie \& Abboud, 1995). This contrasts with most aldol reactions which require strong bases or dissolving metal conditions. Three new stereocenters were formed in compound (2) and two in compound (3) in the freeradical annulation reaction. Since it was not clear what relative stereochemistry would prevail in compounds (2) and (3), we undertook X-ray studies to ascertain these details. The results of these studies are described herein.

Displacement ellipsoid drawings of compounds (2) and (3) with the atom-labeling schemes are shown in Figs. 1 and 2, respectively. All bond lengths and angles of both molecules are normal. Compound (2) has two six-membered rings (A and B), which are fused together along the C5-C10 bond, and a phenyl ring (C). Ring A exhibits a ${ }^{1} C_{4}$ conformation (Boeyens, 1978), with atoms C1 and C4 at distances of 0.60 (1) and -0.66 (1) \AA, respectively, from the plane composed of atoms C2, C3, C5 and C10. Ring B exhibits a ${ }^{6} C_{9}$ inverted chair conformation, with atoms C6 and C9 at distances of 0.66 (1) and -0.61 (1) \AA, respectively, from the plane containing atoms $\mathrm{C}, \mathrm{C} 7, \mathrm{C} 8$ and C 10 . The planes of rings A and B form an angle of $126.4(2)^{\circ}$ with one another. The plane of the carboxy group (C 11 , $\mathrm{O} 11 a$ and $\mathrm{O} 11 b$) is slightly skewed from the plane of the bromophenyl ring, with a dihedral angle of $12.1(2)^{\circ}$. Phenyl ring C is planar, with the largest deviation from the least-squares plane being 0.002 (4) \AA and the average bond length 1.382 (6) \AA.

Fig. 1. The molecular structure of compound (2), showing 50% probability ellipsoids for the non- H atoms and the atom-numbering scheme.

Fig. 2. The molecular structure of compound (3), showing 50% probability ellipsoids for the non-H atoms and the atom-numbering scheme.

Compound (3) consists of a six-membered (D) and a seven-membered ring (E). The six-membered ring adopts a ${ }^{1} C_{4}$ chair conformation, with atoms C 1 and C 4 at distances of 0.43 (1) and -0.68 (1) \AA from the plane of the ring containing atoms $\mathrm{C} 2, \mathrm{C} 3, \mathrm{C} 8 a$ and C9. The seven-membered ring also exhibits a chair conformation (Boessenkool \& Boeyens, 1980), with the C8 atom and the C4-C5 bond, respectively, above and below the plane containing atoms $\mathrm{C} 6, \mathrm{C} 7, \mathrm{C} 8 a$ and C 9 . Atoms C8, C4 and C5 are at distances of $0.63(1)$, 1.14 (1) and 1.13 (1) \AA, respectively, from the same plane. The seven-membered ring has internal torsion angles consistent with a chair conformation, alternating + and - around the ring, with that at $\mathrm{C} 4-\mathrm{C} 5$ being closest to zero $\left[-1.1(3)^{\circ}\right]$. The planes of the chair form an angle of 95.89 (7) ${ }^{\circ}$ with one another.
Compound (3) has one hydrogen bond involving the O8- $\mathrm{H} 8 a$ hydroxyl group and the carbonyl O 1 atom; $\mathrm{O} 8-\mathrm{H} 8 a \quad 0.87(3), \mathrm{H} 8 a \cdots \mathrm{Ol}^{\mathrm{i}} 2.001(3), \quad \mathrm{O} 8 \cdots \mathrm{Ol}^{\mathrm{i}}$ 2.844 (3) \AA and $\mathrm{O} 8-\mathrm{H} 8 a \cdots \mathrm{Ol}^{\mathrm{i}} 162(2)^{\circ}$ [symmetry code: (i) $1-x, 1-y, 2-z]$.

Experimental

Compounds (2) and (3) were crystallized by slow evaporation from a 2 -propanol/hexane mixture and ethanol, respectively.

Compound (2)

Crystal data
$\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{BrO}_{3}$
$M_{r}=351.23$
Triclinic
$P \overline{1}$
$a=7.851$ (1) \AA
$b=10.239(2) \AA$
$c=10.869(2) \AA$
$\alpha=63.03(1)^{\circ}$
$\beta=80.85(1)^{\circ}$
$\gamma=85.97(1)^{\circ}$
$V=768.8(2) \AA^{3}$
$Z=2$
$D_{x}=1.517 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 50 reflections
$\theta=10-11^{\circ}$
$\mu=2.68 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
Plate
$0.48 \times 0.38 \times 0.19 \mathrm{~mm}$
Colorless

Data collection

Siemens $P 3 m / V$ diffractometer
ω scans
Absorption correction: from measured crystal faces (SHELXTL-Plus; Sheldrick, 1991) $T_{\text {min }}=0.321, T_{\text {max }}=$ 0.615

3784 measured reflections 3527 independent reflections

1992 observed reflections
$\left[I_{\text {net }}>2 \sigma\left(I_{\text {net }}\right)\right]$
$R_{\text {int }}=0.0192$
$\theta_{\text {max }}=27.5^{\circ}$
$h=0 \rightarrow 10$
$k=-13 \rightarrow 13$
$l=-14 \rightarrow 14$
4 standard reflections monitored every 100 reflections intensity decay: 1%

Refinement

Refinement on F
$R=0.069$
$\omega \cdot R=0.0476$
$S=1.41$
1992 reflections
190 parameters
H atoms riding $(\mathrm{C}-\mathrm{H}=$
$0.96 \AA$)
$w^{\prime}=1 /\left[\sigma^{2}(F)+0.0004 F^{2}\right]$

$$
\begin{aligned}
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.50 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.55 \mathrm{e}^{-3}
\end{aligned}
$$

Extinction correction: none Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (\AA^{2}) for (2)

	x	y	z	$U_{\text {eq }}$
Br	-0.18966 (8)	-0.22301 (6)	-0.09793 (6)	0.0645 (3)
Ol	-0.5184 (4)	0.5961 (3)	0.2803 (3)	0.057 (2)
Olla	-0.3313 (4)	0.2754 (3)	0.1544 (3)	0.048 (1)
Oll 1 b	-0.2096 (4)	0.4302 (3)	-0.0605 (3)	0.056 (2)
Cl	-0.5969 (6)	0.4827 (4)	0.3234 (4)	0.038 (2)
C2	-0.7685 (6)	0.4551 (5)	0.4141 (5)	0.047 (2)
C3	-0.7707 (6)	0.3105 (5)	0.5464 (5)	0.050 (2)
C4	-0.7101 (6)	0.1853 (4)	0.5113 (5)	0.048 (2)
C5	-0.5318 (5)	0.2121 (4)	0.4248 (4)	0.039 (2)
C6	-0.3862 (6)	0.2113 (5)	0.5030 (5)	0.052 (2)
C7	-0.2117 (6)	0.2394 (6)	0.4118 (6)	0.060 (3)
C8	-0.2096 (6)	0.3826 (5)	0.2781 (6)	0.058 (3)
C9	-0.3552 (6)	0.3908 (4)	0.1989 (5)	0.044 (2)
C10	-0.5314 (6)	0.3585 (4)	0.2894 (4)	0.038 (2)
$\mathrm{Cl1}$	-0.2594 (6)	0.3087 (5)	0.0239 (5)	0.039 (2)
C12	-0.2436 (5)	0.1789 (4)	-0.0022 (4)	0.034 (2)
C 13	-0.3292 (5)	0.0481 (4)	0.0891 (4)	0.040 (2)
C14	-0.3134 (6)	-0.0717 (4)	0.0618 (5)	0.044 (2)

C15	$-0.2126(6)$	$-0.0596(4)$	$-0.0585(5)$	$0.042(2)$
C16	$-0.1260(6)$	$0.0690(5)$	$-0.1516(5)$	$0.049(2)$
C17	$-0.1430(6)$	$0.1871(5)$	$-0.1221(5)$	$0.047(2)$

Table 2. Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$ for (2)

$\mathrm{C} 15-\mathrm{Br}$	$1.897(6)$	$\mathrm{C} 5-\mathrm{C} 4$	$1.523(6)$
$\mathrm{C} 1-\mathrm{O} 1$	$1.209(5)$	$\mathrm{C} 6-\mathrm{C} 5$	$1.527(7)$
$\mathrm{C} 9-\mathrm{O} 11 a$	$1.457(7)$	$\mathrm{C} 10-\mathrm{C} 5$	$1.552(5)$
$\mathrm{C} 11-\mathrm{O} 11 a$	$1.334(6)$	$\mathrm{C} 7-\mathrm{C} 6$	$1.518(6)$
$\mathrm{C} 11-\mathrm{O} 11 b$	$1.209(5)$	$\mathrm{C} 8-\mathrm{C} 7$	$1.525(6)$
$\mathrm{C} 2-\mathrm{Cl}$	$1.499(6)$	$\mathrm{C} 9-\mathrm{C} 8$	$1.513(8)$
$\mathrm{C} 10-\mathrm{Cl}$	$1.514(7)$	$\mathrm{C} 10-\mathrm{C} 9$	$1.525(6)$
$\mathrm{C} 3-\mathrm{C} 2$	$1.525(5)$	$\mathrm{C} 12-\mathrm{C} 11$	$1.473(7)$
$\mathrm{C} 4-\mathrm{C} 3$	$1.521(8)$		
$\mathrm{C} 9-\mathrm{O} 11 a-\mathrm{C} 11$	$119.1(3)$	$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 6$	$111.8(4)$
$\mathrm{C} 2-\mathrm{Cl}-\mathrm{C} 10$	$114.7(4)$	$\mathrm{C} 9-\mathrm{C} 8-\mathrm{C} 7$	$112.2(4)$
$\mathrm{C} 2-\mathrm{Cl}-\mathrm{O} 1$	$122.2(5)$	$\mathrm{C} 10-\mathrm{C} 9-\mathrm{O} 11 a$	$104.4(4)$
$\mathrm{C} 10-\mathrm{Cl}-\mathrm{O} 1$	$123.1(4)$	$\mathrm{C} 10-\mathrm{C} 9-\mathrm{C} 8$	$113.0(4)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{Cl}$	$111.7(4)$	$\mathrm{O} 11 a-\mathrm{C} 9-\mathrm{C} 8$	$108.6(4)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$110.8(4)$	$\mathrm{Cl}-\mathrm{C} 10-\mathrm{C} 5$	$110.7(4)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$112.8(4)$	$\mathrm{C} 1-\mathrm{C} 10-\mathrm{C} 9$	$112.7(4)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 10$	$110.3(4)$	$\mathrm{C} 5-\mathrm{C} 10-\mathrm{C} 9$	$111.9(3)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$114.1(4)$	$\mathrm{C} 12-\mathrm{C} 11-\mathrm{O} 11 a$	$111.7(3)$
$\mathrm{C} 10-\mathrm{C} 5-\mathrm{C} 4$	$109.7(3)$	$\mathrm{C} 12-\mathrm{C} 11-\mathrm{O} 11 b$	$124.7(4)$
$\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 5$	$111.9(4)$	$\mathrm{O} 11 a-\mathrm{C} 11-\mathrm{O} 11 b$	$123.6(5)$

Compound (3)

Crystal data
$\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{2}$
$M_{r}=182.25$
Monoclinic
$P 2_{1} / c$
$a=12.010 \AA$
$b=7.553 \AA$
$c=12.134 \AA$
$\beta=110.34^{\circ}$
$V=1032.1$ (3) \AA^{3}
$Z=4$
$D_{x}=1.173 \mathrm{Mg} \mathrm{m}^{-3}$
Data collection

Siemens $P 3 m / V$ diffractometer
ω scans
Absorption correction: from measured crystal faces (SHELXTL-Plus; Sheldrick, 1991)
$T_{\text {min }}=0.967, T_{\text {max }}=$ 0.983

2676 measured reflections 2374 independent reflections

1380 observed reflections
$\left[I_{\text {nel }}>2 \sigma\left(I_{\text {nel }}\right)\right]$
$R_{\text {int }}=0.010$
$\theta_{\text {max }}=27.5^{\circ}$
$h=0 \rightarrow 15$
$k=0 \rightarrow 9$
$l=-15 \rightarrow 15$
4 standard reflections monitored every 100 reflections intensity decay: 1%

Refinement

Refinement on F
$R=0.0463$
$w R=0.0526$
$S=1.55$
1380 reflections
122 parameters
H atoms riding $(\mathrm{C}-\mathrm{H}=$ $0.96 \AA$), except for the hydroxyl H atom
$w=1 /\left[\sigma^{2}(F)+0.0004 F^{2}\right]$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.15 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.15 \mathrm{e}^{\AA^{-3}}$
Extinction correction: none Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV)

Table 3. Fractional atomic coordinates and equivalent isotropic displacement parameters (\AA^{2}) for (3)

$U_{\text {eq }}=(1 / 3) \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {cq }}$
O1	0.4552 (1)	0.4714 (2)	0.8126 (1)	0.0637 (7)
O8	0.6174 (2)	0.6958 (3)	1.0135 (1)	0.0697 (8)
Cl	0.5548 (2)	0.4712 (3)	0.8071 (2)	0.0443 (8)
C2	0.5729 (2)	0.5054 (3)	0.6932 (2)	0.0532 (8)
C3	0.6679 (2)	0.3886 (3)	0.6754 (2)	0.0545 (9)
C4	0.7856 (2)	0.3917 (3)	0.7790 (2)	0.0519 (8)
C5	0.8435 (2)	0.5773 (3)	0.7890 (2)	0.0652 (10)
C6	0.8713 (2)	0.6834 (3)	0.9020 (2)	0.0616 (9)
C7	0.7648 (2)	0.7450 (3)	0.9314 (2)	0.0546 (8)
C8	0.7092 (2)	0.6083 (3)	0.9865 (2)	0.0508 (8)
C8a	0.6622 (2)	0.4372 (3)	0.9152 (2)	0.0449 (8)
C9	0.7592 (2)	0.3337 (3)	0.8881 (2)	0.0536 (9)
C10	0.8685 (2)	0.2535 (4)	0.7569 (2)	0.0922 (14)

Table 4. Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$ for (3)

$\mathrm{C} 1-\mathrm{OI}$	$1.220(3)$	$\mathrm{C} 9-\mathrm{C} 4$	$1.529(3)$
$\mathrm{C} 8-\mathrm{O} 8$	$1.417(3)$	$\mathrm{C} 10-\mathrm{C} 4$	$1.529(4)$
$\mathrm{C} 2-\mathrm{C} 1$	$1.494(3)$	$\mathrm{C} 6-\mathrm{C} 5$	$1.522(3)$
$\mathrm{C} 8 a-\mathrm{C} 1$	$1.508(2)$	$\mathrm{C} 7-\mathrm{C} 6$	$1.515(3)$
$\mathrm{C} 3-\mathrm{C} 2$	$1.517(3)$	$\mathrm{C} 8-\mathrm{C} 7$	$1.506(3)$
$\mathrm{C} 4-\mathrm{C} 3$	$1.531(2)$	$\mathrm{C} 8 a-\mathrm{C} 8$	$1.548(3)$
$\mathrm{C} 5-\mathrm{C} 4$	$1.550(3)$	$\mathrm{C} 9-\mathrm{C} 8 a$	$1.531(3)$
$\mathrm{C} 2-\mathrm{Cl}-\mathrm{C} 8 a$	$118.6(2)$	$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$119.9(2)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{Ol}$	$120.7(2)$	$\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 5$	$115.8(2)$
$\mathrm{C} 8 a-\mathrm{Cl}-\mathrm{O} 1$	$120.7(2)$	$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 6$	$115.7(2)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{Cl}$	$113.0(2)$	$\mathrm{C} 8 a-\mathrm{C} 8-\mathrm{O} 8$	$110.9(2)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$113.6(2)$	$\mathrm{C} 8 a-\mathrm{C} 8-\mathrm{C} 7$	$117.2(2)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 9$	$114.4(2)$	$\mathrm{O} 8-\mathrm{C}-\mathrm{C} 7$	$106.5(2)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 10$	$109.2(2)$	$\mathrm{C} 9-\mathrm{C} 8 a-\mathrm{C} 1$	$112.6(2)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$109.8(2)$	$\mathrm{C} 9-\mathrm{C} 8 a-\mathrm{C} 8$	$112.9(2)$
$\mathrm{C} 9-\mathrm{C} 4-\mathrm{C} 10$	$107.4(2)$	$\mathrm{C} 1-\mathrm{C} 8 a-\mathrm{C} 8$	$112.3(2)$
$\mathrm{C} 9-\mathrm{C} 4-\mathrm{C} 3$	$107.2(2)$	$\mathrm{C} 4-\mathrm{C} 9-\mathrm{C} 8 a$	$116.3(2)$
$\mathrm{C} 10-\mathrm{C} 4-\mathrm{C} 3$	$108.5(2)$		

For both compounds, SHELXTL-Plus (Sheldrick, 1991) was used for data collection, cell refinement, data reduction, structure solution and refinement, molecular graphics and preparation of material for publication.

KAA wishes to acknowledge the University of Florida, Division of Sponsored Research, for financial support of the crystallography work. EE gratefully acknowledges support by the National Science Foundation (grant CHE-9414240) for this work.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: FG1079). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Boessenkool, I. K. \& Boeyens, J. C. A. (1980). J. Cryst. Mol. Struct. 10, 11-18.
Boeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317-320.
Curran, D. P. (1988). Synthesis, pp. 417-439, 489-513.
Enholm, E. J., Xie, Y. \& Abboud, K. A. (1995). J. Org. Chem. 60, 1112-1113.
Giese, B. (1986). In Radicals in Organic Synthesis: Formation of Carbon-Carbon Bonds. New York: Pergammon.
Sheldrick, G. M. (1991). SHELXTL-Plus. Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Thebtaranonth, C. \& Thebtaranonth, Y. (1994). In Cyclization Reactions. Boca Raton, Florida: CRC Press.

