- Jauch, D. A., Sethy, V. H., Weick, B. G., Chase, T. N. & Schwarcz, R. (1993). *Neuropharmacology*, **32**, 467–472.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Kapoor, V., Kapoor, R. & Chalmers, J. (1994). Clin. Exp. Pharmacol. Physiol. 21, 891–896.
- Kvick, A., Koetzle, T. F., Thomas, R. & Takusagawa, F. (1974). J. Chem. Phys. 60, 3866–3874.

Martin, D. W., Mayes, P. A. & Rodwell, V. W. (1983). Harper's Review of Biochemistry, pp. 464-479. Tokyo: Maruzen Asia.

- Molecular Structure Corporation (1985). TEXSAN. TEXRAY Structure Analysis Package. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Molecular Structure Corporation (1988). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Sheldrick, G. M. (1985). SHELXS86. Crystallographic Computing 3, edited by G. M. Sheldrick, C. Krüger & R. Goddard, pp. 175–189. Oxford University Press.

Stone, T. W. (1993). Pharmacol. Rev. 45, 309-379.

Takusagawa, F., Hirotsu, K. & Shimada, A. (1973). Bull. Chem. Soc. Jpn, 46, 2372-2380.

Takusagawa, F. & Koetzle, T. F. (1978). Acta Cryst. B34, 1149-1154. Takusagawa, F. & Shimada, A. (1973). Chem. Lett. pp. 1089-1090.

Acta Cryst. (1996). C52, 1829-1831

A *cis*-Fused Decalone and a Bicyclo[4.3.1]decanone Ring System

KHALIL A. ABBOUD, YONGPING XIE AND ERIC J. ENHOLM

Department of Chemistry, University of Florida, PO Box 117200, Gainesville, Florida 32611-7200, USA. E-mail: kaabboud@pine.circa.ufl.edu

(Received 22 March 1995; accepted 2 January 1996)

Abstract

The crystal structures of $(4a\alpha, 8\alpha, 8a\alpha)$ - (\pm) -1-oxoperhydro-8-naphthyl *p*-bromobenzoate, C₁₇H₁₉BrO₃, (2), and (\pm) -*endo*-5-hydroxy-1-methylbicyclo[4.3.1.]decan-7-one, C₁₁H₁₈O₂, (3), were determined in order to ascertain their relative configurations. Compound (2) has two *cis*-fused six-membered rings which both adopt chair conformations. Compound (3) has a bridged bicyclic ring system consisting of a six- and a sevenmembered ring which both adopt chair conformations. Molecules of (3) are linked about inversion centers into dimers by O—H···O hydrogen bonds [O···O 2.844 (3) Å] involving the hydroxy and carbonyl groups.

Comment

Many of the sophisticated organic molecules found in nature, such as carbohydrates, steroids and some terpenes, possess the common feature of cyclic components

© 1996 International Union of Crystallography Printed in Great Britain – all rights reserved (Thebtaranonth & Thebtaranonth, 1994). Cyclization reactions, especially those promoted by free radicals, are therefore particularly valuable in the synthesis and modification of these complex molecules (Giese, 1986). The application of free radicals to synthesis, in general, permits neutral reaction conditions and alleviates the need for protecting groups (Curran, 1988).

As part of a plan to develop and exploit freeradical reactions, unsaturated ketones were subjected to treatment with tri-*n*-butyltin hydride, which led to the formation of *O*-stannyl ketyls. The title molecules, (2) and (3), were prepared by a new *O*-stannyl ketyl reaction which promoted an aldol-like cyclization (Enholm, Xie & Abboud, 1995). This contrasts with most aldol reactions which require strong bases or dissolving metal conditions. Three new stereocenters were formed in compound (2) and two in compound (3) in the freeradical annulation reaction. Since it was not clear what relative stereochemistry would prevail in compounds (2) and (3), we undertook X-ray studies to ascertain these details. The results of these studies are described herein.

Displacement ellipsoid drawings of compounds (2) and (3) with the atom-labeling schemes are shown in Figs. 1 and 2, respectively. All bond lengths and angles of both molecules are normal. Compound (2) has two six-membered rings (A and B), which are fused together along the C5-C10 bond, and a phenyl ring (C). Ring A exhibits a ${}^{1}C_{4}$ conformation (Boeyens, 1978), with atoms C1 and C4 at distances of 0.60(1)and -0.66(1) Å, respectively, from the plane composed of atoms C2, C3, C5 and C10. Ring B exhibits a ${}^{6}C_{9}$ inverted chair conformation, with atoms C6 and C9 at distances of 0.66(1) and -0.61(1) Å, respectively, from the plane containing atoms C5, C7, C8 and C10. The planes of rings A and B form an angle of $126.4(2)^{\circ}$ with one another. The plane of the carboxy group (C11, O11a and O11b) is slightly skewed from the plane of the bromophenyl ring, with a dihedral angle of $12.1(2)^{\circ}$. Phenyl ring C is planar, with the largest deviation from the least-squares plane being 0.002(4) Å and the average bond length 1.382(6) Å.

Fig. 2. The molecular structure of compound (3), showing 50% probability ellipsoids for the non-H atoms and the atom-numbering scheme.

Compound (3) consists of a six-membered (D) and a seven-membered ring (E). The six-membered ring adopts a ${}^{1}C_{4}$ chair conformation, with atoms C1 and C4 at distances of 0.43(1) and -0.68(1) Å from the plane of the ring containing atoms C2, C3, C8a and C9. The seven-membered ring also exhibits a chair conformation (Boessenkool & Boeyens, 1980), with the C8 atom and the C4-C5 bond, respectively, above and below the plane containing atoms C6, C7, C8a and C9. Atoms C8, C4 and C5 are at distances of 0.63(1), 1.14(1) and 1.13(1)Å, respectively, from the same plane. The seven-membered ring has internal torsion angles consistent with a chair conformation, alternating + and - around the ring, with that at C4—C5 being closest to zero $[-1.1 (3)^{\circ}]$. The planes of the chair form an angle of $95.89(7)^{\circ}$ with one another.

Compound (3) has one hydrogen bond involving the O8—H8a hydroxyl group and the carbonyl O1 atom; $O8-H8a \quad 0.87 (3), \quad H8a \cdots O1^{1} \quad 2.001 (3), \quad O8 \cdots O1^{1}$ 2.844 (3) Å and O8—H8a···O1ⁱ 162 (2)° [symmetry code: (i) 1 - x, 1 - y, 2 - z].

Experimental

Compounds (2) and (3) were crystallized by slow evaporation from a 2-propanol/hexane mixture and ethanol, respectively.

a = 7.851(1) Å b = 10.239(2) Å c = 10.869(2) Å $\alpha = 63.03 (1)^{\circ}$ $\beta = 80.85 (1)^{\circ}$ $\gamma = 85.97 (1)^{\circ}$ $V = 768.8(2) \text{ Å}^3$ Z = 2 $D_x = 1.517 \text{ Mg m}^{-3}$

Data collection

Siemens P3m/V diffractom-	1992 observed reflections
eter	$[I_{\rm net} > 2\sigma(I_{\rm net})]$
ω scans	$R_{\rm int} = 0.0192$
Absorption correction:	$\theta_{\rm max} = 27.5^{\circ}$
from measured crystal	$h = 0 \rightarrow 10$
faces (SHELXTL-Plus;	$k = -13 \rightarrow 13$
Sheldrick, 1991)	$l = -14 \rightarrow 14$
$T_{\min} = 0.321, T_{\max} =$	4 standard reflections
0.615	monitored every 100
3784 measured reflections	reflections
3527 independent reflections	intensity decay: 1%

Mo $K\alpha$ radiation

Cell parameters from 50

 $0.48 \times 0.38 \times 0.19$ mm

 $\lambda = 0.71073 \text{ Å}$

reflections

 $\theta = 10 - 11^{\circ}$ $\mu = 2.68 \text{ mm}^{-1}$

T = 298 K

Colorless

Plate

Refinement

и

Br 01

011*a*

011*b*

CI C2

C3

C4 C5

C6

C7 C8 C9 C10

C11 C12

C13

C14

Refinement on F	$(\Delta/\sigma)_{\rm max} = 0.001$
R = 0.069	$\Delta \rho_{\rm max} = 0.50 \ {\rm e} \ {\rm \AA}^{-3}$
wR = 0.0476	$\Delta \rho_{\rm min} = -0.55 \ {\rm e} \ {\rm \AA}^{-3}$
S = 1.41	Extinction correction: none
1992 reflections	Atomic scattering factors
190 parameters	from International Tables
H atoms riding (C—H =	for X-ray Crystallography
0.96 Å)	(1974, Vol. IV)
$w = 1/[\sigma^2(F) + 0.0004F^2]$	

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (\AA^2) for (2)

$$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$$

х	N N	2	U_{eq}
-0.18966 (8)	-0.22301 (6)	-0.09793 (6)	0.0645 (3
-0.5184 (4)	0.5961 (3)	0.2803 (3)	0.057 (2)
-0.3313 (4)	0.2754 (3)	0.1544 (3)	0.048(1)
-0.2096 (4)	0.4302 (3)	-0.0605(3)	0.056 (2)
-0.5969 (6)	0.4827 (4)	0.3234 (4)	0.038 (2)
-0.7685 (6)	0.4551 (5)	0.4141 (5)	0.047 (2)
-0.7707 (6)	0.3105 (5)	0.5464 (5)	0.050(2)
-0.7101 (6)	0.1853 (4)	0.5113 (5)	0.048 (2)
-0.5318 (5)	0.2121 (4)	0.4248 (4)	0.039 (2)
-0.3862 (6)	0.2113 (5)	0.5030(5)	0.052 (2)
-0.2117 (6)	0.2394 (6)	0.4118 (6)	0.060 (3)
-0.2096 (6)	0.3826 (5)	0.2781 (6)	0.058 (3)
-0.3552 (6)	0.3908 (4)	0.1989 (5)	0.044 (2)
-0.5314 (6)	0.3585 (4)	0.2894 (4)	0.038 (2)
-0.2594 (6)	0.3087 (5)	0.0239 (5)	0.039 (2)
-0.2436 (5)	0.1789 (4)	-0.0022(4)	0.034 (2)
-0.3292 (5)	0.0481 (4)	0.0891 (4)	0.040 (2)
-0.3134 (6)	-0.0717 (4)	0.0618 (5)	0.044 (2)

1.523 (6)

1.527 (7)

1.552 (5)

1.518(6)

1.525 (6)

1.513 (8)

1.525 (6)

1.473 (7)

111.8 (4)

112.2 (4)

104.4 (4)

113.0 (4)

108.6 (4)

110.7 (4)

112.7 (4)

111.9(3)

111.7 (3)

124.7 (4)

123.6 (5)

C15	-0.2126 (6)	-0.0596 (4)	-0.0585 (5)	0.042 (2)
C16	-0.1260 (6)	0.0690(5)	-0.1516 (5)	0.049 (2)
C17	-0.1430 (6)	0.1871 (5)	-0.1221 (5)	0.047 (2)

Table 2. Selected geometric parameters (Å, °) for (2)

1.897 (6)

1.209 (5)

1.457 (7)

1.334 (6)

1.209 (5)

1.499 (6)

1514(7)

1.525 (5)

1.521 (8)

119.1 (3)

114.7 (4)

122.2 (5)

123.1 (4)

111.7(4)

110.8 (4)

112.8 (4)

110.3 (4)

114.1(4)

109.7 (3)

111.9 (4)

C15-Br

C1—O1 C9—O11a

C11---011a

C2-C1

C10-C1

C3-C2

C4—C3

C9—O11a—C11

C2-C1-C10

C10-C1-01

C3-C2-C1

C4-C3-C2

C5-C4-C3

C6-C5-C10

C6-C5-C4

C10---C5---C4

C7-C6-C5

C2-C1-O1

C5—C4

C6-C5

C10_C5

C7 - C6

C8-C7

C9-C8

C10-C9

C12-C11

C8-C7-C6

С9—С8—С7

C10--C9--O11a

C10-C9-C8

011a-C9-C8

CI-C10-C5

C1-C10-C9

C5-C10-C9

C12 - C11 - O11a

C12-C11-O11b

011a-C11-011b

Table 3.	Fractional	atomic	coordinates	and	equivalent
isot	ropic displa	cement	parameters ((Å2) f	for (3)

is	sotropic dis _l	vlacement p	parameters (Ų)	for (3)	
	Ue	$q = (1/3) \sum_i \sum_i \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n$	$d_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j$.		
	x	у	z	U_{cq}	
01	0.4552(1)	0.4714 (2	.) ().8126(1)	0.0637 (7)	
08	0.6174 (2)	0.6958 (3	i) 1.0135 (1)	0.0697 (8)	
C1	().5548 (2)	0.4712 (3	3) 0.8071 (2)	0.0443 (8)	
C2	0.5729 (2)	0.5054 (3	3) 0.6932 (2)	0.0532 (8)	
C3	0.6679(2)	0.3886 (3	b) 0.6754 (2)	0.0545 (9)	
C4	0.7856(2)	0.3917 (3	3) 0.7790 ₍₂₎	0.0519 (8)	
C5	0.8435 (2)	0.5773 (3	3) 0.7890 (2)	0.0652 (10)	
C6	0.8713 (2)	0.6834 (3	() (0.9020 (2)	0.0616 (9)	
C7	0.7648 (2)	0.7450 (3	s) 0.9314 (2)	0.0546 (8)	
C8	0.7092 (2)	0.6083 (3	3) 0.9865 (2)	0.0508 (8)	
C8a	0.6622(2)	0.4372 (3	3) 0.9152 (2)	0.0449 (8)	
C9	0.7592 (2)	0.3337 (3	3) 0.8881 (2)	0.0536 (9)	
C10	0.8685 (2)	0.2535 (4	0.7569 (2)	0.0922 (14)	
Table 4. Selected geometric parameters (Å, $^{\circ}$) for (3)					
C101		1,220 (3)	C9—C4	1.529 (3)	
C8 08		1.417 (3)	C10-C4	1.529 (4)	
C2-C1		1.494 (3)	C6—C5	1.522 (3)	
C8a-C1		1.508 (2)	C7—C6	1.515 (3)	
C3—C2		1.517 (3)	C8—C7	1.506 (3)	
C4—C3		1.531(2)	C8a—C8	1.548 (3)	
C5—C4		1.550(3)	C9—C8a	1.531 (3)	
C2-C1-	C8a	118.6 (2)	C6—C5—C4	119.9 (2)	
C2-C1-	01	120.7 (2)	C7—C6—C5	115.8 (2)	
C8a—C1	01	120.7 (2)	C8—C7—C6	115.7 (2)	
C3-C2-	CI	113.0 (2)	C8a—C8—O8	110.9 (2)	
C4-C3-	C2	113.6 (2)	C8a-C8-C7	117.2 (2)	

Compound (3)	
Crystal data	
C ₁₁ H ₁₈ O ₂ $M_r = 182.25$ Monoclinic $P2_1/c$ a = 12.010 Å b = 7.553 Å c = 12.134 Å $\beta = 110.34^\circ$ V = 1032.1 (3) Å ³ Z = 4 $D_r = 1.173$ Mg m ⁻³	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å Cell parameters from 40 reflections $\theta = 10-11^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 298 K Needle $0.34 \times 0.28 \times 0.28 \text{ mm}$ Colorless
$\omega_{x} = 1.175 \text{ mg m}$	

Data collection

Siemens P3m/V diffractometer ω scans Absorption correction: from measured crystal faces (SHELXTL-Plus; Sheldrick, 1991) $T_{\min} = 0.967, T_{\max} =$ 0.983 2676 measured reflections 2374 independent reflections

Refinement

Refinement on FR = 0.0463wR = 0.0526S = 1.551380 reflections 122 parameters H atoms riding (C-H =0.96 Å), except for the hydroxyl H atom

1380 observed reflections $[I_{\rm net} > 2\sigma(I_{\rm net})]$ $R_{\rm int} = 0.010$ $\theta_{\rm max} = 27.5^{\circ}$ $h = 0 \rightarrow 15$ $k = 0 \rightarrow 9$ $l = -15 \rightarrow 15$ 4 standard reflections monitored every 100 reflections intensity decay: 1%

 $w = 1/[\sigma^2(F) + 0.0004F^2]$ $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.15 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.15 \ {\rm e} \ {\rm \AA}^{-3}$ Extinction correction: none Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV)

KAA wishes to acknowledge the University of Florida, Division of Sponsored Research, for financial support of the crystallography work. EE gratefully acknowledges support by the National Science Foundation (grant CHE-9414240) for this work.

For both compounds, SHELXTL-Plus (Sheldrick, 1991) was

used for data collection, cell refinement, data reduction,

structure solution and refinement, molecular graphics and

08-C8-C7

C9-C8a-C1

C9-C8a-C8

C1-C8a-C8

C4-C9-C8a

114.4(2)

109.2(2)

109.8 (2)

107.4 (2)

107.2(2)

108.5(2)

preparation of material for publication.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: FG1079). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

C5-C4-C9

C5-C4-C10

C5-C4-C3

C9-C4-C10

C10-C4-C3

Boessenkool, I. K. & Boeyens, J. C. A. (1980). J. Cryst. Mol. Struct. 10. 11-18.

- Boeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317-320.
- Curran, D. P. (1988). Synthesis, pp. 417-439, 489-513.
- Enholm, E. J., Xie, Y. & Abboud, K. A. (1995). J. Org. Chem. 60, 1112-1113.
- Giese, B. (1986). In Radicals in Organic Synthesis: Formation of Carbon-Carbon Bonds. New York: Pergammon.
- Sheldrick, G. M. (1991). SHELXTL-Plus. Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Thebtaranonth, C. & Thebtaranonth, Y. (1994). In Cyclization Reactions. Boca Raton, Florida: CRC Press.

106.5 (2)

112.6(2)

112.9 (2)

112.3 (2)

116.3(2)